Yahoo Suche Web Suche

  1. Kurze Videos erklären dir schnell & einfach das ganze Thema. Jetzt kostenlos ausprobieren! Immer perfekt vorbereitet – dank Lernvideos, Übungen, Arbeitsblättern & Lehrer-Chat.

Suchergebnisse

  1. Suchergebnisse:
  1. Wir haben die wichtigsten Informationen und Rechenregeln zum Bilden von Integralen zusammengefasst und bringen dir mit Übungen und Beispielen näher, wie du den Flächeninhalt zwischen einer Funktion und der x-Achse berechnest.

    • integral beispiele1
    • integral beispiele2
    • integral beispiele3
    • integral beispiele4
    • integral beispiele5
  2. Die Integralrechnung hilft dir, Flächeninhalte zwischen der x-Achse und einer Funktion auszurechnen. Flächeninhalt zwischen Graph und x-Achse. Dafür brauchst du zuerst die sogenannte Stammfunktion. Wie du die berechnest, erfährst du jetzt.

  3. Im Folgenden zeigen wir dir an konkreten Beispielen, wie du ein bestimmtes Integral berechnest und wie dieses mit dem Flächeninhalt unter einer Funktion zusammenhängt.

    • integral beispiele1
    • integral beispiele2
    • integral beispiele3
    • integral beispiele4
    • integral beispiele5
    • Integralrechnung: Grundlagen und Summenregel
    • Elementare Integrationsregeln
    • Integralrechnung Mit Integrationsgrenzen
    • Formelsammlung Zur Integralrechnung
    • Fläche und Integralrechnung

    Im Folgenden zeigen wir euch, was es mit der Summenregel der Integralrechnung auf sich hat. Ziel ist es, die Fläche unter einer Funktion zu berechnen. Wir beginnen dabei mit der Untersumme. Schaut euch einmal die folgende Grafik an: Obersumme und Untersumme: In schwarz wird die Funktion dargestellt. Um die Fläche unter dieser zu berechnen, wurden R...

    Stammfunktion: Ihr kennt mit Sicherheit noch Funktionen. Da gab es zum Beispiel: f(x) = y = 2x oder f(x) = y = 2x3 + 3x. Und dann gab es die Ableitungen dazu, zum Beispiel f'(x) = y' = 2 oder f'(x) = y' = 6x2+ 3. Beim Integrieren gehen wir in die umgekehrte Richtung. Wir haben eine Funktion und integrieren diese. Das Ergebnis ist eine Stammfunktion...

    Zeichnet man eine Funktion, so ergibt das oftmals einen sehr "langen" Verlauf. Jetzt will man natürlich nicht die komplette Fläche unter einer Funktion erhalten, die ist oftmals unendlich. Sondern nur die Fläche in einem gewissen Abschnitt. Deshalb setzt man so genannte Integrationsgrenzen. Schaut euch dazu erst einmal die folgende Grafik an: Die I...

    Hier findet ihr eine Tabelle / Formelsammlung um die Integralrechnung möglichst einfach durchzuführen. Druckt euch diese am Besten aus und seht beim Lösen von Aufgaben in die Tabelle.

    Zur Erinnerung: Mit der Integralrechnung lässt sich die Fläche unter einer Funktion bestimmen. Mit diesem Wissen versuchen wir im nun folgenden für ein einfaches Beispiel die Fläche zwischen den Graphen zweier Funktionen zu berechnen. Schaut euch dazu einmal die folgende Grafik an: Folgendes gibt es bei dieser Grafik zu verstehen: 1. Wir haben zwei...

    • Integrationsregeln Übersicht. im Video zur Stelle im Video springen. (00:17) Die wichtigsten Integrationsregeln findest du hier zusammengefasst. Diese Regeln musst du beim Integrieren beachten, genau wie beim Ableiten von Funktionen
    • Potenzregel. im Video zur Stelle im Video springen. (00:27) Die Potenzregel ist die wichtigste der Integrationsregeln. Du wendest sie immer dann an, wenn das zu berechnende Integral eine Potenzfunktion enthält, also ein x mit einer Hochzahl.
    • Faktorregel. im Video zur Stelle im Video springen. (01:06) Die Faktorregel ist eine der einfachsten Integrationsregeln. Du benutzt sie immer, wenn deine Funktion einen Faktor c enthält, also wenn du mit einer konstanten Zahl multiplizierst.
    • Summenregel. im Video zur Stelle im Video springen. (01:31) Die dritte der Integralregeln ist die Summenregel. Du verwendest sie immer, wenn dein Integral eine Summe enthält.
  4. Beispiel 1 Bestimme das Integral der Funktion $f(x)=(x^2-4)^3\cdot 2x$ im Intervall 4 und 5 und gebe die Menge aller Stammfunktionen an. Lösung Beispiel 1 Wir schreiben zunächst das Integral auf, welches bestimmt werden soll: \begin{align*} \int_4^5\underbrace{(x^2-4)^3}_{f(u(x))} \cdot \underbrace{2x}_{u'(x)} \textrm{d} x \end{align*}

  5. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert. Die Integralrechnung steht in engem Zusammenhang mit der Differentialrechnung. Die Integralrechnung ist motiviert durch die Berechnung von Flächeninhalten, die eine krummlinige Grenze haben.