Yahoo Suche Web Suche

Suchergebnisse

  1. Suchergebnisse:
  1. Irving Langmuir war ein US-amerikanischer Chemiker und Physiker. 1932 erhielt er den Nobelpreis für Chemie.

  2. Irving Langmuir was an American chemist, physicist, and engineer who won the Nobel Prize in Chemistry in 1932 for his work in surface chemistry. He also invented the gas-filled incandescent lamp, the hydrogen welding technique, and the Langmuir probe for measuring plasma parameters.

    • Overview
    • Early life and education
    • Finding a career
    • Major research
    • Meteorology research
    • Avocations and awards
    • GeneratedCaptionsTabForHeroSec

    Irving Langmuir (born Jan. 31, 1881, Brooklyn, N.Y., U.S.—died Aug. 16, 1957, Falmouth, Mass.) American physical chemist who was awarded the 1932 Nobel Prize for Chemistry “for his discoveries and investigations in surface chemistry.” He was the second American and the first industrial chemist to receive this honour. Besides surface chemistry, his ...

    Langmuir was the third of four sons of Charles Langmuir, an insurance executive, and Sadie Comings. Both of his parents were inveterate record keepers, and he developed this habit himself while still young. He attended schools in Brooklyn and Philadelphia, as well as Paris during his father’s three-year company assignment in Europe. Interested in chemistry, physics, and mathematics from his youth, Langmuir chose a major in metallurgical engineering at Columbia University in New York City because that curriculum, as he later said, “was strong in chemistry…had more physics than the chemical course, and more mathematics than the course in physics—and I wanted all three.”

    Britannica Quiz

    Faces of Science

    After graduating from Columbia’s School of Mines in 1903, Langmuir studied with physical chemist Walther Nernst at the University of Göttingen in Germany. His dissertation focused on the dissociation of gases near a hot platinum wire, for which he received a doctorate in 1906. As a student, he was influenced not only by Nernst, who often sought practical applications of his fundamental research, but also by the mathematician Felix Klein, who advocated the use of mathematics as a tool and promoted the interaction between theoretical science and its practical applications. During his years in Germany, Langmuir frequented the mountains for skiing in the winter and for climbing in the summer. Such outdoor activities remained lifelong interests for him.

    After returning to the United States, Langmuir became an instructor at the Stevens Institute of Technology in Hoboken, N.J., but he did not find his three years there particularly satisfying. His teaching duties left him little time for research, and he was not paid what he thought he was worth. He quickly realized that this was not the avenue to the scientific reputation and financial security that he sought.

    In the summer of 1909, instead of a mountain climbing vacation, Langmuir worked at the General Electric Company’s research laboratory in Schenectady, N.Y. Enticed by the company’s commitment to fundamental research, the latitude given to the scientists working there, and the availability of equipment, Langmuir accepted an invitation to remain. At first he apparently intended to find another academic position, but he stayed at General Electric for the rest of his career, retiring in 1950 but continuing as a consultant until his death.

    Improving the early tungsten-filament incandescent light bulbs was one of the ongoing projects at the research lab in 1909. These high-vacuum bulbs had several drawbacks: their glass envelopes blackened over time, thus reducing their illumination, and the tungsten filaments were relatively short-lived. While other workers at the laboratory believed that a better vacuum would lengthen the bulbs’ lives, Langmuir began to investigate the behaviour of gases near a hot tungsten filament. The blackening of the bulbs, he discovered, resulted from the deposition of tungsten that evaporated from the hot filament, and an atmosphere of inert gas within the bulb—a mixture of nitrogen and argon worked best—reduced the problem. This, along with Langmuir’s development of an improved design for the tungsten filament, led to a much-improved and commercially successful incandescent bulb.

    Exclusive academic rate for students! Save 67% on Britannica Premium.

    Learn More

    Among the gases that Langmuir studied was hydrogen. A hot tungsten filament rapidly cools in the presence of this gas, and he postulated the cause to be the dissociation of hydrogen molecules into atoms. When he later read about the heating caused by the recombination of hydrogen atoms into molecules at solid surfaces, he combined this with his earlier work to develop an atomic hydrogen welding torch, which generates high temperatures through the dissociation and subsequent recombination of hydrogen.

    Langmuir’s study of gases near hot metal surfaces also led him to investigate thermionic emission—the ejection of electrons from a heated surface—and the behaviour of surfaces in a vacuum. These investigations resulted in theoretical advances in describing the spatial distribution of charge between a pair of electrodes and practical improvements to vacuum tubes, as well as the invention of a fast and efficient vacuum pump.

    The largest body of Langmuir’s work involved the behaviour of molecules at solid and liquid surfaces. He laid the groundwork for his prize-winning work on surface chemistry as early as 1916–17 with important publications on the adsorption, condensation, and evaporation of gas molecules at solid surfaces and on the arrangements of molecules in the surface layers of liquids. These studies, like most of his investigations, showed his penchant for simple experimental designs coupled with extensive mathematical analysis. After 1932 Langmuir returned to his earlier interest in liquid surfaces and, together with his collaborators Katherine Blodgett and Vincent Schaefer, examined the monomolecular layers of various organic compounds on the surface of water. Blodgett developed a method for transferring such a monolayer to a solid surface, and the successive buildup of monolayers became known as a Langmuir-Blodgett film. This technique proved significant in later biophysical studies of the membranes of living cells.

    During World War II, Langmuir worked on the problem of airplane deicing at a station on the summit of Mount Washington, N.H. With Schaefer, he also investigated the production of particles of various sizes and their behaviour in the atmosphere and in filters. These studies led to improved methods for generating smokescreens by the military, as well...

    This excursion into experimental meteorology was part of Langmuir’s interest in “science out-of-doors,” which involved his close observation and explanation of many natural everyday phenomena. An avid outdoorsman, he enjoyed hiking, mountain climbing, skiing, swimming, and boating throughout much of his life. He learned to pilot a plane at age 49 and was a personal friend of Charles Lindbergh. He was also a friend of the musical conductor Leopold Stokowski, with whom he worked to improve the quality of radio broadcasts of orchestral music.

    Langmuir was an ardent conservationist and an advocate for the control of atomic energy, as well as an unsuccessful candidate to Schenectady’s city council and an organizer of the Boy Scouts in that city. In 1912 he married Marion Mersereau of South Orange, N.J., and they adopted two children. He involved his family in many of his hobbies and outdoor activities. He died of a heart attack while vacationing at Cape Cod, Mass.

    Irving Langmuir was an American physical chemist who won the 1932 Nobel Prize for his discoveries in surface chemistry. He also made contributions to gas reactions, atomic structure, vacuum science, and atmospheric science.

    • Richard E. Rice
  3. Irving Langmuir was awarded the Nobel Prize in Chemistry for his discoveries and investigations in surface chemistry. He proposed the theory of monolayer adsorption, which explains how atoms or molecules react more easily on surfaces.

  4. Irving Langmuir (* 31. Januar 1881 in Brooklyn, New York; † 16. August 1957 in Woods Hole, Massachusetts) war ein US-amerikanischer Chemiker und Physiker.

  5. The Nobel Prize in Chemistry 1932 was awarded to Irving Langmuir "for his discoveries and investigations in surface chemistry"

  6. Irving Langmuir. amerikanischer Chemiker; Nobelpreis für Chemie 1932 für seine Entdeckungen und Forschungen im Bereich der Oberflächenchemie. * 31. Januar 1881 Brooklyn/NY. † 16. August 1957 Woods Hole/MA.

  1. spokeo.com wurde im letzten Monat von mehr als 100.000 Nutzern besucht

    Find Their Age, Phone Number & Address. See Their Online Pics And Profiles.